Tag Archives: MBSE

Safety-driven MBSE methodology


제목: 안전 주도형 모델 기반 시스템 공학 방법론

Overview

2007년에 나온 논문으로 Specification에 대한 방법론을 기술한 것이다.

외부 행성 탐사 미션에 대한 안전 주도 설계 방법론의 적용을 보면서 참조문헌으로 찾은 논문이다.

Safety-driven model based system engineering methodology의 part 1, part 2가 있는데, 그 문헌에서 하나의 project에 대해서 나름 자세하게 내용을 기술하였다.

아래 그림은 seamless하도록 specification을 하기 위해 각 contents에 대한 traceability graph를 그린 것이다. 아래 그림에서 빨간색으로 표시한 것은 논문의 내용과는 다르게 필자의 임의로 수정한 것.

보면 알겠지만, ISO26262나 ARP4754a의 내용과 약간 유사하다고 볼 수 있다.

traceability

각 step에 대한 상세한 설명은 참조보고서에 기술되어 있다.

Part 1에서는 step-by-step으로 기술하였고, Part 2에서는 9 step을 다 완료하고 각 step에서 나온 결과물을 재구성하고 조합하여 정리한 버전으로 기술되어 있는데, 문서의 흐름이 step과는 맞지 않아서 첨엔 읽는데 혼동이 있었다.

또 하나의 흥미로웠던 점은 보고서에서 나온 방식대로 specification을 하게 된다면, 굳이 doors나 관리도구를 사용하기보다는 text-editor정도로도 충분하지 않을까 하는 생각을 갖게 되었다.

xml schema를 정의해서 위의 그림에 대한 field를 정의해서 coding하듯이 specification을 하는 것도 방법이 될 수 있겠다고 생각이 들었다. 그렇다면 text기반이기 때문에 변경이력 관리도 굉장히 편할 수 있을 것이고..

 

Model based Systems Engineering 방법론 설명

Step 1~Step 9를 정의하였으며, 각 단계에서 수행한 결과를 간단하게 기술하였다. Systems engineering에 대한 기본적인 지식이 있다는 가정하에 자세한 설명은 하지 않으므로, 내용이 잘 이해가 되지 않거나 자세히 알고 싶다면 원문을 참조바람.

 

Step 1: Identify Mission Goals, Requirements and Constraints

vehicle level에서의 목표, 요구사항, 제약사항을 식별하는 단계임. Step 1에서 수행한 결과물의 예제는 아래와 같음. 아래의 G1, G2, G3는 일종의 ID로서 해당 spec의 property(goal)을 의미하기도 하며, 도구에 의해 추적 관리가 가능하게 될 것임. 그리고 SV는 State variable의 약자로 거의 대부분의 Spec마다 붙어 있음. 쉽게 말하면 일종의 ‘소프트웨어의 변수’로 이해하면 될 듯.

  • G1. Characterize the presence of a subsurface ocean on an icy moon of an outer planet (Clark, 2007). (↑ACC4ACC5), (→HLR3, HLR4), (↓SV-81)
  • G2. Characterize the three-dimensional configuration of the icy crust of the icy moon of an outer planet, including possible zones of liquid (Clark, 2007). (↑ACC4, ACC5), (→HLR1, HLR2, HLR3)
  • G3. Map organic and inorganic surface compositions of the icy moon of an outer planet, especially as related to astrobiology (Clark, 2007). (↑ACC4, ACC5), (→HLR2, HLR3)
  • G4. Characterize surface features of the icy moon of an outer planet and identify candidate sites for future exploration (Clark, 2007). (↑ACC4, ACC5), (→HLR1, HLR2, HLR3)

 

  • HLR3. The mission shall image TBD% of the surface of the icy moon of the outer planet in spectra other than visual and infrared, to a resolution of TBD. (←G1, G2, G3, G4, G6), (→S/C-G1, S/C-G2, S/C-R1, S/C-R2),(↓2.1, SV-1, SV-101, SV-102)
    Rationale: The other bands of the spectrum provide insights into the chemical composition of the icy moon

여기서 화살표의 의미가 추적 관계에 의한 연결 방향으로 생각이 되는데, 첫번째 그림에서 필자의 임의로 수정을 한 부분이 있어서 큰 의미를 둘 필요는 없다고 생각이 됨.

 

Step 2: Define System Accidents or Unacceptable Losses

시스템과 관련된 사고를 정의한다.

 

  • ACC1. Humans and/or human assets on earth are killed/damaged. (↓PC1, H5, SV-77, SV-78, SV-79)
  • ACC2. Humans and/or human assets off of the earth are killed/damaged. (↓PC1, H6, SV-77, SV-78, SV-79)
  • ACC3. Organisms on any of the moons of the outer planet (if they exist) are killed or mutated by biological agents of Earth Origin. (↓H4)
  • ACC4. The scientific data corresponding to the mission goals are not collected. (↓G1, G2, G3, G4, G5, G6, G7, H1, SV-80)
  • ACC5. The scientific data corresponding to the mission goals is rendered unusable (i.e., deleted and/or corrupted) before it can be fully investigated. (↓G1, G2, G3, G4, G5, G6, G7, H2, H3, SV-80)

 

Step 3: Define High-level Hazards

상위 수준에서의 위험요인을 정의한다.

 

  • H1. Inability of Mission to collect data. (↑ACC4), (↓SV-85)
  • H2. Inability of Mission to return collected data. (↑ACC5), (↓SV-86)
  • H3. Inability of Mission scientific investigators to use returned data. (↑ACC5), (↓SV-7, SV-88)

 

Step 4: Define High-level Safety-related Constraints

상위 수준의 안전 관련 제약사항을 정의한다.

  • H1. Inability of Mission to collect data. (↑ACC4), (↓SV-85)
    • SC1. The mission must have the necessary functionality for data acquisition at the required times. (←H1), (→MOC-G1, MOC-G2, MOC-G3, MOC-G4), (↓2.1, 2.2, 2.4, SV-85)
  • H2. Inability of Mission to return collected data. (↑ACC5), (↓SV-86)
    • SC2. The mission must be able to return data at the required times. (←H2), →MOC-G1, MOC-G2, MOC-G3, MOC-G4), (↓2.1, 2.3, 2.4, 2.5, SV-86)
  • H3. Inability of Mission scientific investigators to use returned data. (↑ACC5), (↓SV-87, SV-88)
    • SC3. Mission scientific investigators must be able to use the data from the mission at the required times. (←H3), (↓2.1, 2.3, 2.4, 2.5, SV-87, SV-88), (→MOC-G1, MOC-G2, MOC-G3, MOC-G4)

 

Step 5: Identify Environment and Customer Constraints

skip

Step 6: Perform High-level Functional Decomposition

상위 수준의 기능에 대해 decomposition을 하면서 grouping을 수행한다. Design structure matrix도구를 사용한다. 시스템 수준에서의 여러가지 기능을 sub-system으로 allocation하기 위한 단계라고 볼 수 있다. 설계 원칙인 loosely coupling, tightly cohesion을 최대한 준수하기 위한 방법론이다. 아직 여기까지는 safety관점의 아키텍처 평가는 수행하지 않았다.

DSM에 대한 내용은 다음의 링크를 참조(Design Structure Matrix 활용)
DSM을 통해 수행한 결과 다양한 function들을 그룹화하여 4개의 sub-system으로 정리를 했다.

dsm

 

Step 7: Design High-level System Control Structure

sub-system을 정의하고 각 요소간의 구조를 정의한다. 시스템 아키텍처 수준의 활동이라고 볼 수 있음

moc

 

Step 8: Perform Preliminary Hazard Analysis

ARP4754a의 시스템 예비 안전 평가와 유사하다. DSM및 Control structure를 작성한 것을 가지고 hazard를 고려하여 시스템 설계가 적절한지의 여부를 평가한다. 이 작업을 하다가 DSM 및 control structure의 단계로 다시 돌아가서 수정 작업을 할 수도 있다.

pha

 

Step 9: Define System Element Specifications

각각의 sub-system에 대해 기술한다. 여기서부터는 DO-254 혹은 DO-178C의 단계(혹은 ISO26262-6의 단계)에 해당한다.

Step 9의 내용은 Generating requirements for complex embedded system using State Analysis를 참고

 

결론

  • Specification이 비교적 seamless하게 정의되어 있다.
  • Specification단계를 절차화하여 이해하기 쉽다. (그런데 생각해보니 ARP4754나 ISO26262도 마찬가지 인거 같기도 한데.. 이 논문이 좀 더 step이 명확하다.)
  • 사례가 있어서 specification 내용을 보고 배우기 좋다.
  • 수준별 specification의 scope의 혼란이 많지 않을 것으로 생각된다.

 

보다 자세한 설명이 필요하다면 원문을 참고하거나 댓글로 문의사항을 남겨주기 바랍니다.

Advertisements